
On the Visualization of
Riemann Surfaces
Simo Kivelä
The graphs of complex-valued functions f :  Ø  or functions of the type
f : 2 Ø 2 are in general two-dimensional manifolds in the space 4. The
article presents a method for the visualization of such a graph. The graph
is first projected to three-dimensional space with parallel projection and
the image~the surface in three-dimensional space~is rendered on the
screen in the usual way. The visualization can be improved in two ways:
the graph can be rotated in four-dimensional space or the direction line
of the projection can be changed, which means that the observer flies
around the graph in four dimensions. The animation and manipulation ca-
pabilities of Mathematica are appropriate tools for the purpose.

‡ Introduction
Complex-valued functions f :  Ø , that is, functions of the form
f HzL = f Hx + i yL = uHx, yL + i vHx, yL, can be visualized by putting a rectangular or
a polar grid in the x- y plane and plotting the image of the grid in the u-v plane.
The type of grid used depends on the function. More generally, the method can
be used for any function f : 2 Ø 2, f Hx, yL = HuHx, yL, vHx, yLL.

The

In[1]:= ParametricPlot@Through@8Re, Im<@Sin@x + I yDDD,
8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø NoneD

Out[1]=

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

 standard package Graphics`ComplexMap` had tools for visualizing
complex-valued functions in this way. The new two-parameter
form of ParametricPlot now provides the functionality of
Graphics`ComplexMap`. As an example we consider the function sinHzL.

We can say that the map “folds” the x- y plane in some way and the result~the
image~is flattened out on the u-v plane. As you can guess from the plot, the im-
age somehow overlaps itself on the left and the right.

Actually, the graph of this type of function is a two-dimensional manifold (a sur-
face) in four-dimensional space 4 with x, y, u, and v as the axes. To get a better
visualization, the surface should not be flattened out in two dimensions. One way
to do this is to take a third axis and lift the surface up from the uv plane.
The following two examples show the same sinHzL function with x and y as the
third (vertical) axis.

In[2]:= w = Sin@x + I yD;

In[3]:= s1 = ComplexExpand@8Re@wD, Im@wD, x<D

Out[3]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, x<

In[4]:= ParametricPlot3D@s1, 8x, -2, 2<, 8y, -2, 2<,
BoxRatios Ø 81, 1, 1<, ViewPoint Ø 8-3, 1, 1<D

Out[4]=

In[5]:= s2 = ComplexExpand@8Re@wD, Im@wD, y<D

Out[5]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, y<

In[6]:= ParametricPlot3D@s2, 8x, -2, 2<, 8y, -2, 2<,
BoxRatios Ø 81, 1, 1<, ViewPoint Ø 8-3, 1, 1<D

Out[6]=

On the Visualization of Riemann Surfaces 393

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

The plots look very different although the same part of the surface is considered.
The difference becomes clear if we take a larger part of the surface.

In[7]:= ParametricPlot3D@s1, 8x, -6, 6<, 8y, -Pi, Pi<,
BoxRatios Ø 81, 1, 3<, ViewPoint Ø 8-3, 1, 1<D

Out[7]=

In[8]:= ParametricPlot3D@s2, 8x, -6, 6<, 8y, -Pi, Pi<,
BoxRatios Ø 81, 1, 1<, ViewPoint Ø 8-3, 1, 1<D

Out[8]=

In the second plot with y as the vertical axis, the surface overlaps itself so many
times that we cannot see its characteristic features. The first plot with x as the
vertical axis shows the well-known visualization of sinHzL as a Riemann surface.

394 Simo Kivelä

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Many good plots of this type and analysis of the corresponding surfaces and func-
tions can be found in [1|4] by Michael Trott and [5] by Corless and Jeffrey.

The two plots can be considered from another point of view. They are both im-
ages of the graph of the function in a parallel projection 4 Ø 3. In the first
case, the projection direction is parallel to the y axis and the image (the range
of the projection mapping) is the three-dimensional subspace spanned by the
three other axes. In the second case, the projection direction is parallel to the x
axis. Both projection mappings are orthogonal, that is, the image space (or the
range of the mapping) is the orthogonal complement of the projection direction.

This opens a new way to show the graph of a function f : 2 Ø 2,
f Hx, yL = HuHx, yL, vHx, yLL. The graph is a two-dimensional manifold in the space
4 and any projection mapping 4 Ø 3 can be used to form its image in 3.
This is (in general) an ordinary surface and usual methods can be used to plot it.
The projection mapping can be a parallel projection or a perspective projection.
The parallel projection may have any direction. The parallel projection may be or-
thogonal or oblique. (Of course, ParametricPlot3D also uses some projec-
tion methods to plot a two-dimensional graphic of a three-dimensional object on
a computer screen. Thus, to display an object from four-dimensional space, two
consecutive projection mappings are used.)
In the following, we first develop some tools and then use them to create images
and animations of some geometric objects from four-dimensional space.

‡ Tools
A parallel projection in three-dimensional space can be defined by giving the
direction of the projection (say, a column vector s with three components) and
the normal vector of the two-dimensional image plane (a column vector n with
three components). The placement of the plane is not important because the im-
age projected on the plane does not change when the plane is moved without
changing its direction. Therefore, we may assume that the origin is in the plane.

Then, the matrix of the projection mapping is given by P = I - s nT

nT s
, where I is

the identity matrix.

Q

Q' O

If x is the coordinate vector of the point Q, then P x gives the (three-dimen-
sional) coordinate vector for the image point Q£. To get coordinates in the two-
dimensional plane, a basis must be chosen and the coordinates transformed
appropriately. (See [6] for examples.)

On the Visualization of Riemann Surfaces 395

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

The approach can be generalized to the four-dimensional case and we give the
following code to compute the matrix of a parallel projection. Here s is the
direction of the projection line and b stands for the basis vectors of the three-
dimensional image space.

In[9]:= genProj@s_, b__D := Module@8n, p<, n = Cross@bD;

p =

IdentityMatrix@Length@sDD - H1 ê n.sL Outer@Times, s, nD;
Drop@Inverse@Transpose@8b, s<DD.p, -1DD

We need a special type of rotation to generate animations in four-dimensional
space. Here, a two-dimensional subspace is invariant and the rotation acts in the
orthogonal complement of this subspace. If the vectors a and b span the invari-
ant subspace and w is the angle of rotation, the matrix of the rotation mapping
can be generated as follows.

In[10]:= genRot4D@a_, b_, w_D :=

Module@8ker, c, d, r, b0, b1<, ker = NullSpace@8a, b<D;
88c, d<, r< = QRDecomposition@Transpose@kerDD;
b0 = 8a, b, c, d<;
b1 = 8a, b, Cos@wD c - Sin@wD d, Sin@wD c + Cos@wD d<;
Transpose@Inverse@b0D.b1DD

We may also need orthonormal bases for orthogonal complements of given vec-
tors. The following function gives an orthonormal basis where the first vectors
span the same subspace as the vectors in b.

In[11]:= ortBasis@b_ListD := QRDecomposition@

Transpose@Flatten@8b, NullSpace@bD<, 1DDD@@1DD

The graph of the function 2 Ø 2 in four-dimensional u-v-x- y space is repre-
sented by a net of polygons that is generated by the following function.

In[12]:= genNet4D@w_, 8x_, x1_, x2_, dx_<,

8y_, y1_, y2_, dy_<D := Module@8t<,

t = N@Table@w, 8x, x1, x2, dx<, 8y, y1, y2, dy<DD;
Table@Polygon@8t@@i, jDD, t@@i + 1, jDD,

t@@i + 1, j + 1DD, t@@i, j + 1DD, t@@i, jDD<D, 8i, 1,
Dimensions@tD@@1DD - 1<, 8j, 1, Dimensions@tD@@2DD - 1<DD

Here w is the four-dimensional expression of the function with x and y as vari-
ables. For example, w=f[x,y] or w=f[r,phi], where

In[13]:= f@x_, y_D =

ComplexExpand@8Re@Sin@x + I yDD, Im@Sin@x + I yDD, x, y<D

Out[13]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, x, y<

or

396 Simo Kivelä

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

In[14]:= f@r_, phi_D =

ComplexExpand@8Re@Hx + I yL^2D, Im@Hx + I yL^2D, x, y<D ê.
8x Ø r Cos@phiD, y Ø r Sin@phiD<

Out[14]= 9r2 Cos@phiD2 - r2 Sin@phiD2,

2 r2 Cos@phiD Sin@phiD, r Cos@phiD, r Sin@phiD=

The following test may also be needed.

In[15]:= test4D@x_D := And@VectorQ@x, NumericQD, Length@xD ã 4D

‡ Simple Example
First, we consider the function f HzL = z2. We use polar coordinates to get beauti-
ful pictures.

In[16]:= f@r_, phi_D =

ComplexExpand@8Re@Hx + I yL^2D, Im@Hx + I yL^2D, x, y<D ê.
8x Ø r Cos@phiD, y Ø r Sin@phiD<

Out[16]= 9r2 Cos@phiD2 - r2 Sin@phiD2,

2 r2 Cos@phiD Sin@phiD, r Cos@phiD, r Sin@phiD=

In[17]:= gr4D = genNet4DAf@r, phiD,

8r, 0, 2, 1 ê 5<, 9phi, -Pi, Pi, Pi ë 36=E;

We generate a parallel projection to view an animation. The projection direction
is parallel to the vector H0, 0, 0, 1L. The three other vectors form the basis of the
image space (which is the orthogonal complement of the projection direction).

In[18]:= b = 880, 0, 0, 1<, 81, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<<;
p = Apply@genProj, bD;
p êê MatrixForm

Out[19]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0

In the animation we rotate the graph of the function in four-dimensional space.
The rotation fixes the u-v plane (i.e., the vectors H1, 0, 0, 0L and H0, 1, 0, 0L are
invariant).

In[20]:= q = genRot4DA81, 0, 0, 0<, 80, 1, 0, 0<, Pi ë 18.E;

q êê MatrixForm
Out[21]//MatrixForm=

1. 0. 0. 0.
0. 1. 0. 0.
0. 0. 0.984808 -0.173648
0. 0. 0.173648 0.984808

On the Visualization of Riemann Surfaces 397

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Next to the graph of the function we also plot the four axes of the four-dimen-
sional space. The following gives the necessary definition.

In[22]:= d = 5; dst = 5; ax4D = 8Thickness@0.01D,
8RGBColor@1, 0, 0D, Line@880, 0, 0, 0<, 8d, 0, 0, 0<<D<,
8RGBColor@0, 1, 0D, Line@880, 0, 0, 0<, 80, d, 0, 0<<D<,
8RGBColor@0, 0, 1D, Line@880, 0, 0, 0<, 80, 0, d, 0<<D<,
8RGBColor@0.8, 0.8, 0D,
Line@880, 0, 0, 0<, 80, 0, 0, d<<D<< ê.

x_?test4D ß x + 8-dst, -dst, 0, 0<;

In the animation we may rotate the graph or we fly around it, that is, rotate the
projection mapping. Rotating the graph gives the following animation.

In[23]:= d = 5.2; opts =

8Boxed Ø False, PlotRange Ø 88-d, d<, 8-d, d<, 8-d, d<<<;

In[24]:= gr3D = Table@Graphics3D@8ax4D ê. x_?test4D ß p.x, gr4D ê.

x_?test4D ß p.Nest@q.Ò &, x, kD<, optsD, 8k, 0, 35<D;

ListAnimate@
gr3DD

Out[25]=

398 Simo Kivelä

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Here is an animation of the flight around the graph.

In[26]:= gr3D = Table@pk = Apply@genProj, Map@Nest@q.Ò &, Ò, kD &, bDD;
Graphics3D@8gr4D, ax4D< ê. x_?test4D ß pk.x, optsD,

8k, 0, 35<D;
ListAnimate@gr3DD

Out[27]=

We get a more interesting animation if the rotation happens in the v- y plane.

In[28]:= q = genRot4DA81, 0, 0, 0<, 80, 0, 1, 0<, Pi ë 18.E;

In[29]:= gr3D = Table@pk = Apply@genProj, Map@Nest@q.Ò &, Ò, kD &, bDD;
Graphics3D@8gr4D, ax4D< ê. x_?test4D ß pk.x, optsD,

8k, 0, 35<D;
ListAnimate@gr3DD

Out[30]=

On the Visualization of Riemann Surfaces 399

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

This frame shows that the surface does not intersect itself, so there is no real
intersection in four dimensions, either.

‡ Function sin HzL
We may analyze the function sinHzL in a similar manner. In this case, it is better
to use rectangular coordinates.

In[31]:= f@x_, y_D =

ComplexExpand@8Re@Sin@x + I yDD, Im@Sin@x + I yDD, x, y<D

Out[31]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, x, y<

In[32]:= gr4D = genNet4D@f@x, yD, 8x, -5, 5, 1 ê 5<, 8y, -2, 2, 1 ê 5<D;

In[33]:= q = genRot4DA81, 0, 0, 0<, 80, 1, 0, 0<, Pi ë 18.E;

In[34]:= gr3D = Table@Graphics3D@8ax4D ê. x_?test4D ß p.x, gr4D ê.

x_?test4D ß p.Nest@q.Ò &, x, kD<, optsD, 8k, 0, 35<D;

ListAnimate@
gr3DD

Out[35]=

400 Simo Kivelä

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

‡ Toward a Better Animation
With the function Manipulate we can create animations in which the user may
easily control the view.
We will use four-dimensional spherical coordinates for defining the necessary
parallel projection mappings. The viewing direction~or the direction of the pro-
jecting line~is then

In[36]:= s = 8Sin@th1D Sin@th2D Cos@phD,
Sin@th1D Sin@th2D Sin@phD, Sin@th1D Cos@th2D, Cos@th1D<;

where th1, th2, and ph are the three angles of spherical coordinates. The three-
dimensional image space is the orthogonal complement of this direction. It is
spanned by the following orthonormal vectors:

In[37]:= e1 = D@s, th1D; e2 = D@s, th2D ë Sin@th1D;

e3 = D@s, phD ë Sin@th1D ë Sin@th2D;

In[38]:= b = 8s, e1, e2, e3<;
b êê MatrixForm

Out[39]//MatrixForm=

The projection mapping is

In[40]:= p = Simplify@Apply@genProj, bDD

Out[40]= 88Cos@phD Cos@th1D Sin@th2D,
Cos@th1D Sin@phD Sin@th2D, Cos@th1D Cos@th2D, -Sin@th1D<,

8Cos@phD Cos@th2D, Cos@th2D Sin@phD, -Sin@th2D, 0<,
8-Sin@phD, Cos@phD, 0, 0<<

and with Manipulate we get an animation in which the user may change the
viewing direction in four dimensions~that is, fly freely around the graph.

In[41]:= d = 7.0; opts = 8Boxed Ø False,
PlotRange Ø 88-d, d<, 8-d, d<, 8-d, d<<, ImageSize Ø 400<;

In[42]:= MManipulate@q = p ê. 8ph Ø f, th1 Ø t1, th2 Ø t2<; Graphics3D@
8ax4D ê. x_?test4D ß q.x, gr4D ê. x_?test4D ß q.x<, optsD,

88f, 2.5<, 0, 2 Pi, 0.1, Appearance Ø "Labeled"<,
88t1, 1.5<, 0, Pi, 0.1, Appearance Ø "Labeled"<,
88t2, 1.6<, 0, Pi, 0.1, Appearance Ø "Labeled"<,
SaveDefinitions Ø True,
AutorunSequencing Ø 881, 60<, 82, 30<, 83, 30<<,
ContinuousAction Ø FalseD

On the Visualization of Riemann Surfaces 401

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

Cos@phD Sin@th1D Sin@th2D Sin@phD Sin@th1D Sin@th2D Cos@th2D Sin@th1D Cos@th1D

Cos@phD Cos@th1D Sin@th2D Cos@th1D Sin@phD Sin@th2D Cos@th1D Cos@th2D -Sin@th1D

Cos@phD Cos@th2D Cos@th2D Sin@phD -Sin@th2D 0

-Sin@phD Cos@phD 0 0

Out[42]=

f 2.5

t1 1.5

t2 1.6

‡ Final Remarks
The tools developed in this article present one way to understand the nature
of complex functions or functions 2 Ø 2. These methods apply not only to the
graphs of these functions, but to any geometric object in four-dimensional space.
For example, the properties of the Klein bottle can be studied given a four-
dimensional parametric representation.

From the technical viewpoint, another approach could also be used: instead
of first projecting the objects to the space 3 and then to the two-dimensional
computer screen, only one projection mapping 4 Ø 2 could be used.

The methods and material presented here were developed in a Finnish project
MatTaFi, matta.hut.fi/mattafi. The aim of the project is to study and produce
computer-based materials for basic courses of mathematics at the university level.

402 Simo Kivelä

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

‡ References
[1] M. Trott, “Visualization of Riemann Surfaces of Algebraic Functions,” Mathematica in

Education and Research, 6(4), 1997 pp. 15|36.

[2] M. Trott, “Visualization of Riemann Surfaces IIa, Compositions of Elementary Transcen-
dental Functions,” The Mathematica Journal, 7(4), 2000 pp. 465-496.

[3] M. Trott, “Visualization of Riemann Surfaces IIb, Compositions of Elementary Transcen-
dental Functions,” The Mathematica Journal, 8(1), 2001 pp. 50|62.

[4] M. Trott, “Visualization of Riemann Surfaces IId, Compositions of Elementary Transcen-
dental Functions,” The Mathematica Journal, 8(4), 2002 pp. 532|562.

[5] R. M. Corless and D. J. Jeffrey, “Graphing Elementary Riemann Surfaces,” ACM SIGSAM
Bulletin: Communications in Computer Algebra, 32(1), 1998 pp. 11|17.

[6] I. D. Faux and M. J. Pratt, Computational Geometry for Design and Manufacture
(Mathematics and Its Applications), New York: John Wiley & Sons, 1979.

[7] B. Thaller, “Visualization of Complex Functions,” The Mathematica Journal, 7(2), 1998
pp. 163|181.

About the Author
Simo K. Kivelä is an emeritus lecturer of mathematics. He has used mathematical software
like muMath, Matlab, and Mathematica in several courses, beginning in the 1970s. He has
also been the supervisor of projects where information and communication technologies
are used in teaching and studying mathematics. He has continued this work as a part-
time researcher after retirement.

Simo Kivelä
Helsinki University of Technology,
Institute of Mathematics,
P.O. Box 1100,
FI-02015 HUT, Finland
simo.kivela@tkk.fi

On the Visualization of Riemann Surfaces 403

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.

