
On the Visualization of
Riemann Surfaces
Simo Kivelä 
The graphs of complex-valued functions f :  Ø  or functions of the type 
f : 2 Ø 2  are in general two-dimensional manifolds in the space 4. The
article presents a method for the visualization of such a graph. The graph 
is  first  projected  to  three-dimensional  space  with  parallel  projection  and
the  image~the  surface  in  three-dimensional  space~is  rendered  on  the
screen  in  the  usual  way.  The  visualization  can  be  improved  in  two  ways:
the  graph  can  be  rotated  in  four-dimensional  space  or  the  direction  line
of  the  projection  can  be  changed,  which  means  that  the  observer  flies
around the graph in four dimensions. The animation and manipulation ca-
pabilities of Mathematica are appropriate tools for the purpose.

‡ Introduction
Complex-valued  functions  f :  Ø ,  that  is,  functions  of  the  form 
f HzL = f Hx + i yL = uHx, yL + i vHx, yL, can be visualized by putting a rectangular or
a polar grid in the x- y plane and plotting the image of the grid in the u-v plane.
The type of grid used depends on the function. More generally, the method can
be used for any function f : 2 Ø 2, f Hx, yL = HuHx, yL, vHx, yLL.

The

In[1]:= ParametricPlot@Through@8Re, Im<@Sin@x + I yDDD,
8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø NoneD

Out[1]=
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 standard  package  Graphics`ComplexMap`  had  tools  for  visualizing
complex-valued  functions  in  this  way.  The  new  two-parameter
form  of  ParametricPlot  now  provides  the  functionality  of
Graphics`ComplexMap`. As an example we consider the function sinHzL. 



We can say that the map “folds” the x- y  plane in some way and the result~the 
image~is flattened out on the u-v plane. As you can guess from the plot, the im-
age somehow overlaps itself on the left and the right.

Actually, the graph of this type of function is a two-dimensional manifold (a sur- 
face) in four-dimensional space 4  with x, y, u, and v as the axes. To get a better
visualization, the surface should not be flattened out in two dimensions. One way
to do this is to take a third axis and lift the surface up from the uv plane.
The  following  two examples  show the  same sinHzL  function  with  x  and  y  as  the 
third (vertical) axis.

In[2]:= w = Sin@x + I yD;

In[3]:= s1 = ComplexExpand@8Re@wD, Im@wD, x<D

Out[3]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, x<

In[4]:= ParametricPlot3D@s1, 8x, -2, 2<, 8y, -2, 2<,
BoxRatios Ø 81, 1, 1<, ViewPoint Ø 8-3, 1, 1<D

Out[4]=

In[5]:= s2 = ComplexExpand@8Re@wD, Im@wD, y<D

Out[5]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, y<

In[6]:= ParametricPlot3D@s2, 8x, -2, 2<, 8y, -2, 2<,
BoxRatios Ø 81, 1, 1<, ViewPoint Ø 8-3, 1, 1<D

Out[6]=
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The plots look very different although the same part of the surface is considered. 
The difference becomes clear if we take a larger part of the surface.

In[7]:= ParametricPlot3D@s1, 8x, -6, 6<, 8y, -Pi, Pi<,
BoxRatios Ø 81, 1, 3<, ViewPoint Ø 8-3, 1, 1<D

Out[7]=

In[8]:= ParametricPlot3D@s2, 8x, -6, 6<, 8y, -Pi, Pi<,
BoxRatios Ø 81, 1, 1<, ViewPoint Ø 8-3, 1, 1<D

Out[8]=

In the second plot with y  as the vertical axis,  the surface overlaps itself  so many
times  that  we  cannot  see  its  characteristic  features.  The  first  plot  with  x  as  the 
vertical axis shows the well-known visualization of sinHzL as a Riemann surface.
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Many good plots of this type and analysis of the corresponding surfaces and func- 
tions can be found in [1|4] by Michael Trott and [5] by Corless and Jeffrey.

The two plots can be considered from another point of view. They are both im- 
ages  of  the  graph  of  the  function  in  a  parallel  projection  4 Ø 3.  In  the  first
case,  the  projection  direction  is  parallel  to  the  y  axis  and  the  image  (the  range
of  the  projection  mapping)  is  the  three-dimensional  subspace  spanned  by  the
three other axes.  In the second case,  the projection direction is  parallel  to the x
axis.  Both  projection  mappings  are  orthogonal,  that  is,  the  image  space  (or  the
range of the mapping) is the orthogonal complement of the projection direction.

This  opens  a  new  way  to  show  the  graph  of  a  function  f : 2 Ø 2, 
f Hx, yL = HuHx, yL, vHx, yLL. The graph is a two-dimensional manifold in the space
4  and  any  projection  mapping  4 Ø 3  can  be  used  to  form  its  image  in  3.
This is (in general) an ordinary surface and usual methods can be used to plot it.
The projection mapping can be a parallel projection or a perspective projection.
The parallel projection may have any direction. The parallel projection may be or-
thogonal  or  oblique.  (Of  course,  ParametricPlot3D  also  uses  some  projec-
tion methods to plot a two-dimensional graphic of a three-dimensional object on
a computer screen. Thus, to display an object from four-dimensional space, two
consecutive projection mappings are used.)
In the following, we first develop some tools and then use them to create images 
and animations of some geometric objects from four-dimensional space.

‡ Tools
A  parallel  projection  in  three-dimensional  space  can  be  defined  by  giving  the
direction  of  the  projection  (say,  a  column  vector  s  with  three  components)  and 
the  normal  vector  of  the  two-dimensional  image  plane  (a  column vector  n  with
three components). The placement of the plane is not important because the im-
age  projected  on  the  plane  does  not  change  when  the  plane  is  moved  without
changing its direction. Therefore, we may assume that the origin is in the plane.

Then,  the  matrix  of  the  projection  mapping  is  given  by  P = I - s nT

nT s
,  where  I  is

the identity matrix. 

Q

Q' O

If  x  is  the  coordinate  vector  of  the  point  Q,  then  P x  gives  the  (three-dimen-
sional) coordinate vector for the image point Q£. To get coordinates in the two-
dimensional  plane,  a  basis  must  be  chosen  and  the  coordinates  transformed
appropriately. (See [6] for examples.)

On the Visualization of Riemann Surfaces 395

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.



The  approach  can  be  generalized  to  the  four-dimensional  case  and  we  give  the
following  code  to  compute  the  matrix  of  a  parallel  projection.  Here  s  is  the
direction  of  the  projection  line  and  b  stands  for  the  basis  vectors  of  the  three- 
dimensional image space.

In[9]:= genProj@s_, b__D := Module@8n, p<, n = Cross@bD;

p =

IdentityMatrix@Length@sDD - H1 ê n.sL Outer@Times, s, nD;
Drop@Inverse@Transpose@8b, s<DD.p, -1DD

We  need  a  special  type  of  rotation  to  generate  animations  in  four-dimensional 
space. Here, a two-dimensional subspace is invariant and the rotation acts in the
orthogonal complement of this subspace. If the vectors a  and b  span the invari-
ant  subspace  and  w  is  the  angle  of  rotation,  the  matrix  of  the  rotation  mapping
can be generated as follows.

In[10]:= genRot4D@a_, b_, w_D :=

Module@8ker, c, d, r, b0, b1<, ker = NullSpace@8a, b<D;
88c, d<, r< = QRDecomposition@Transpose@kerDD;
b0 = 8a, b, c, d<;
b1 = 8a, b, Cos@wD c - Sin@wD d, Sin@wD c + Cos@wD d<;
Transpose@Inverse@b0D.b1DD

We may also need orthonormal bases for orthogonal complements of given vec- 
tors.  The  following  function  gives  an  orthonormal  basis  where  the  first  vectors
span the same subspace as the vectors in b.

In[11]:= ortBasis@b_ListD := QRDecomposition@

Transpose@Flatten@8b, NullSpace@bD<, 1DDD@@1DD

The graph of  the function 2 Ø 2  in  four-dimensional  u-v-x- y  space is  repre- 
sented by a net of polygons that is generated by the following function.

In[12]:= genNet4D@w_, 8x_, x1_, x2_, dx_<,

8y_, y1_, y2_, dy_<D := Module@8t<,

t = N@Table@w, 8x, x1, x2, dx<, 8y, y1, y2, dy<DD;
Table@Polygon@8t@@i, jDD, t@@i + 1, jDD,

t@@i + 1, j + 1DD, t@@i, j + 1DD, t@@i, jDD<D, 8i, 1,
Dimensions@tD@@1DD - 1<, 8j, 1, Dimensions@tD@@2DD - 1<DD

Here w  is  the four-dimensional  expression of the function with x  and y  as  vari- 
ables. For example, w=f[x,y] or w=f[r,phi], where

In[13]:= f@x_, y_D =

ComplexExpand@8Re@Sin@x + I yDD, Im@Sin@x + I yDD, x, y<D

Out[13]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, x, y<

or
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In[14]:= f@r_, phi_D =

ComplexExpand@8Re@Hx + I yL^2D, Im@Hx + I yL^2D, x, y<D ê.
8x Ø r Cos@phiD, y Ø r Sin@phiD<

Out[14]= 9r2 Cos@phiD2 - r2 Sin@phiD2,

2 r2 Cos@phiD Sin@phiD, r Cos@phiD, r Sin@phiD=

The following test may also be needed.

In[15]:= test4D@x_D := And@VectorQ@x, NumericQD, Length@xD ã 4D

‡ Simple Example
First, we consider the function f HzL = z2. We use polar coordinates to get beauti- 
ful pictures.

In[16]:= f@r_, phi_D =

ComplexExpand@8Re@Hx + I yL^2D, Im@Hx + I yL^2D, x, y<D ê.
8x Ø r Cos@phiD, y Ø r Sin@phiD<

Out[16]= 9r2 Cos@phiD2 - r2 Sin@phiD2,

2 r2 Cos@phiD Sin@phiD, r Cos@phiD, r Sin@phiD=

In[17]:= gr4D = genNet4DAf@r, phiD,

8r, 0, 2, 1 ê 5<, 9phi, -Pi, Pi, Pi ë 36=E;

We generate a parallel projection to view an animation. The projection direction 
is parallel to the vector H0, 0, 0, 1L. The three other vectors form the basis of the
image space (which is the orthogonal complement of the projection direction).

In[18]:= b = 880, 0, 0, 1<, 81, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<<;
p = Apply@genProj, bD;
p êê MatrixForm

Out[19]//MatrixForm= 

1 0 0 0
0 1 0 0
0 0 1 0

In the animation we rotate the graph of the function in four-dimensional space.
The  rotation  fixes  the  u-v  plane  (i.e.,  the  vectors  H1, 0, 0, 0L  and  H0, 1, 0, 0L  are 
invariant).

In[20]:= q = genRot4DA81, 0, 0, 0<, 80, 1, 0, 0<, Pi ë 18.E;

q êê MatrixForm
Out[21]//MatrixForm= 

1. 0. 0. 0.
0. 1. 0. 0.
0. 0. 0.984808 -0.173648
0. 0. 0.173648 0.984808
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Next to the graph of the function we also plot the four axes of the four-dimen- 
sional space. The following gives the necessary definition.

In[22]:= d = 5; dst = 5; ax4D = 8Thickness@0.01D,
8RGBColor@1, 0, 0D, Line@880, 0, 0, 0<, 8d, 0, 0, 0<<D<,
8RGBColor@0, 1, 0D, Line@880, 0, 0, 0<, 80, d, 0, 0<<D<,
8RGBColor@0, 0, 1D, Line@880, 0, 0, 0<, 80, 0, d, 0<<D<,
8RGBColor@0.8, 0.8, 0D,
Line@880, 0, 0, 0<, 80, 0, 0, d<<D<< ê.

x_?test4D ß x + 8-dst, -dst, 0, 0<;

In the animation we may rotate the graph or we fly around it, that is, rotate the 
projection mapping. Rotating the graph gives the following animation.

In[23]:= d = 5.2; opts =

8Boxed Ø False, PlotRange Ø 88-d, d<, 8-d, d<, 8-d, d<<<;

In[24]:= gr3D = Table@Graphics3D@8ax4D ê. x_?test4D ß p.x, gr4D ê.

x_?test4D ß p.Nest@q.Ò &, x, kD<, optsD, 8k, 0, 35<D;

ListAnimate@
gr3DD

Out[25]=
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Here is an animation of the flight around the graph. 

In[26]:= gr3D = Table@pk = Apply@genProj, Map@Nest@q.Ò &, Ò, kD &, bDD;
Graphics3D@8gr4D, ax4D< ê. x_?test4D ß pk.x, optsD,

8k, 0, 35<D;
ListAnimate@gr3DD

Out[27]=

We get a more interesting animation if the rotation happens in the v- y plane. 

In[28]:= q = genRot4DA81, 0, 0, 0<, 80, 0, 1, 0<, Pi ë 18.E;

In[29]:= gr3D = Table@pk = Apply@genProj, Map@Nest@q.Ò &, Ò, kD &, bDD;
Graphics3D@8gr4D, ax4D< ê. x_?test4D ß pk.x, optsD,

8k, 0, 35<D;
ListAnimate@gr3DD

Out[30]=

On the Visualization of Riemann Surfaces 399

The Mathematica Journal 11:3 © 2009 Wolfram Media, Inc.



This  frame  shows  that  the  surface  does  not  intersect  itself,  so  there  is  no  real 
intersection in four dimensions, either.

‡ Function sin HzL
We may analyze the function sinHzL  in a similar manner. In this case, it is better 
to use rectangular coordinates.

In[31]:= f@x_, y_D =

ComplexExpand@8Re@Sin@x + I yDD, Im@Sin@x + I yDD, x, y<D

Out[31]= 8Cosh@yD Sin@xD, Cos@xD Sinh@yD, x, y<

In[32]:= gr4D = genNet4D@f@x, yD, 8x, -5, 5, 1 ê 5<, 8y, -2, 2, 1 ê 5<D;

In[33]:= q = genRot4DA81, 0, 0, 0<, 80, 1, 0, 0<, Pi ë 18.E;

In[34]:= gr3D = Table@Graphics3D@8ax4D ê. x_?test4D ß p.x, gr4D ê.

x_?test4D ß p.Nest@q.Ò &, x, kD<, optsD, 8k, 0, 35<D;

ListAnimate@
gr3DD

Out[35]=
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‡ Toward a Better Animation
With the function Manipulate we can create animations in which the user may
easily control the view.
We  will  use  four-dimensional  spherical  coordinates  for  defining  the  necessary
parallel projection mappings. The viewing direction~or the direction of the pro-
jecting line~is then

In[36]:= s = 8Sin@th1D Sin@th2D Cos@phD,
Sin@th1D Sin@th2D Sin@phD, Sin@th1D Cos@th2D, Cos@th1D<;

where th1, th2, and ph are the three angles of spherical coordinates. The three-
dimensional  image  space  is  the  orthogonal  complement  of  this  direction.  It  is
spanned by the following orthonormal vectors:

In[37]:= e1 = D@s, th1D; e2 = D@s, th2D ë Sin@th1D;

e3 = D@s, phD ë Sin@th1D ë Sin@th2D;

In[38]:= b = 8s, e1, e2, e3<;
b êê MatrixForm

Out[39]//MatrixForm= 

The projection mapping is

In[40]:= p = Simplify@Apply@genProj, bDD

Out[40]= 88Cos@phD Cos@th1D Sin@th2D,
Cos@th1D Sin@phD Sin@th2D, Cos@th1D Cos@th2D, -Sin@th1D<,

8Cos@phD Cos@th2D, Cos@th2D Sin@phD, -Sin@th2D, 0<,
8-Sin@phD, Cos@phD, 0, 0<<

and with  Manipulate  we  get  an  animation  in  which  the  user  may  change  the
viewing direction in four dimensions~that is, fly freely around the graph.

In[41]:= d = 7.0; opts = 8Boxed Ø False,
PlotRange Ø 88-d, d<, 8-d, d<, 8-d, d<<, ImageSize Ø 400<;

In[42]:= MManipulate@q = p ê. 8ph Ø f, th1 Ø t1, th2 Ø t2<; Graphics3D@
8ax4D ê. x_?test4D ß q.x, gr4D ê. x_?test4D ß q.x<, optsD,

88f, 2.5<, 0, 2 Pi, 0.1, Appearance Ø "Labeled"<,
88t1, 1.5<, 0, Pi, 0.1, Appearance Ø "Labeled"<,
88t2, 1.6<, 0, Pi, 0.1, Appearance Ø "Labeled"<,
SaveDefinitions Ø True,
AutorunSequencing Ø 881, 60<, 82, 30<, 83, 30<<,
ContinuousAction Ø FalseD
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Cos@phD Sin@th1D Sin@th2D Sin@phD Sin@th1D Sin@th2D Cos@th2D Sin@th1D Cos@th1D

Cos@phD Cos@th1D Sin@th2D Cos@th1D Sin@phD Sin@th2D Cos@th1D Cos@th2D -Sin@th1D

Cos@phD Cos@th2D Cos@th2D Sin@phD -Sin@th2D 0

-Sin@phD Cos@phD 0 0



Out[42]=

f 2.5

t1 1.5

t2 1.6

‡ Final Remarks
The  tools  developed  in  this  article  present  one  way  to  understand  the  nature
of complex functions or functions 2 Ø 2. These methods apply not only to the
graphs of these functions, but to any geometric object in four-dimensional space.
For  example,  the  properties  of  the  Klein  bottle  can  be  studied  given  a  four- 
dimensional parametric representation.

From  the  technical  viewpoint,  another  approach  could  also  be  used:  instead
of  first  projecting  the  objects  to  the  space  3  and  then  to  the  two-dimensional
computer screen, only one projection mapping 4 Ø 2 could be used. 

The  methods  and  material  presented  here  were  developed  in  a  Finnish  project
MatTaFi,  matta.hut.fi/mattafi.  The  aim  of  the  project  is  to  study  and  produce 
computer-based materials for basic courses of mathematics at the university level.
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