Olkoon annettuna kaksi kompleksilukua napakoordinaattimuodossa:
Lukujen itseisarvot ovat ja , niiden napakulmat (argumentit) ja .
Lukujen tulo saadaan sinin ja kosinin yhteenlaskukaavojen avulla muotoon
Vastaavaan tapaan saadaan luvun , käänteisluvulle
Kummassakin tapauksessa tulokset ovat napakoordinaattimuotoja. Lukujen tulon itseisarvo on siis ja napakulma . Käänteisluvun muodostuksessa itseisarvo muuttuu käänteisluvuksi ja napakulma vastaluvuksi. Siis:
Jos , luku voidaan kirjoittaa muotoon . Edellä esitetystä seuraa tällöin ja yleisemmin ns. de Moivren kaava
Tässä voi olla mikä tahansa kokonaisluku, mikä nähdään yhdistämällä edellä olevat tuloa ja käänteislukua koskevat tulokset.
Linkkejä
Kompleksiluvun napakoordinaattiesitys
Kiertotekijä
Kompleksiluvun juuret
Kompleksilukujen tulo (interaktiivinen dokumentti)
Simo K. Kivelä 26.04.2005